118 research outputs found

    Phase transitions of quasistationary states in the Hamiltonian Mean Field model

    Get PDF
    The out-of-equilibrium dynamics of the Hamiltonian Mean Field (HMF) model is studied in presence of an externally imposed magnetic field h. Lynden-Bell's theory of violent relaxation is revisited and shown to adequately capture the system dynamics, as revealed by direct Vlasov based numerical simulations in the limit of vanishing field. This includes the existence of an out-of-equilibrium phase transition separating magnetized and non magnetized phases. We also monitor the fluctuations in time of the magnetization, which allows us to elaborate on the choice of the correct order parameter when challenging the performance of Lynden-Bell's theory. The presence of the field h removes the phase transition, as it happens at equilibrium. Moreover, regions with negative susceptibility are numerically found to occur, in agreement with the predictions of the theory.Comment: 6 pages, 7 figure

    A dynamical classification of the range of pair interactions

    Full text link
    We formalize a classification of pair interactions based on the convergence properties of the {\it forces} acting on particles as a function of system size. We do so by considering the behavior of the probability distribution function (PDF) P(F) of the force field F in a particle distribution in the limit that the size of the system is taken to infinity at constant particle density, i.e., in the "usual" thermodynamic limit. For a pair interaction potential V(r) with V(r) \rightarrow \infty) \sim 1/r^a defining a {\it bounded} pair force, we show that P(F) converges continuously to a well-defined and rapidly decreasing PDF if and only if the {\it pair force} is absolutely integrable, i.e., for a > d-1, where d is the spatial dimension. We refer to this case as {\it dynamically short-range}, because the dominant contribution to the force on a typical particle in this limit arises from particles in a finite neighborhood around it. For the {\it dynamically long-range} case, i.e., a \leq d-1, on the other hand, the dominant contribution to the force comes from the mean field due to the bulk, which becomes undefined in this limit. We discuss also how, for a \leq d-1 (and notably, for the case of gravity, a=d-2) P(F) may, in some cases, be defined in a weaker sense. This involves a regularization of the force summation which is generalization of the procedure employed to define gravitational forces in an infinite static homogeneous universe. We explain that the relevant classification in this context is, however, that which divides pair forces with a > d-2 (or a < d-2), for which the PDF of the {\it difference in forces} is defined (or not defined) in the infinite system limit, without any regularization. In the former case dynamics can, as for the (marginal) case of gravity, be defined consistently in an infinite uniform system.Comment: 12 pages, 1 figure; significantly shortened and focussed, additional references, version to appear in J. Stat. Phy

    Analytical results on the magnetization of the Hamiltonian Mean Field model

    Full text link
    The violent relaxation and the metastable states of the Hamiltonian Mean-Field model, a paradigmatic system of long-range interactions, is studied using a Hamiltonian formalism. Rigorous results are derived algebraically for the time evolution of selected macroscopic observables, e.g., the global magnetization. The high and low energy limits are investigated and the analytical predictions are compared with direct NN-body simulations. The method we use enables us to re-interpret the out-of-equilibrium phase transition separating magnetized and (almost) unmagnetized regimes

    Boundary effects in the stepwise structure of the Lyapunov spectra for quasi-one-dimensional systems

    Full text link
    Boundary effects in the stepwise structure of the Lyapunov spectra and the corresponding wavelike structure of the Lyapunov vectors are discussed numerically in quasi-one-dimensional systems consisting of many hard-disks. Four kinds of boundary conditions constructed by combinations of periodic boundary conditions and hard-wall boundary conditions are considered, and lead to different stepwise structures of the Lyapunov spectra in each case. We show that a spatial wavelike structure with a time-oscillation appears in the spatial part of the Lyapunov vectors divided by momenta in some steps of the Lyapunov spectra, while a rather stationary wavelike structure appears in the purely spatial part of the Lyapunov vectors corresponding to the other steps. Using these two kinds of wavelike structure we categorize the sequence and the kinds of steps of the Lyapunov spectra in the four different boundary condition cases.Comment: 33 pages, 25 figures including 10 color figures. Manuscript including the figures of better quality is available from http://newt.phys.unsw.edu.au/~gary/step.pd

    Unified order-disorder vortex phase transition in high-Tc superconductors

    Full text link
    The diversity of vortex melting and solid-solid transition lines measured in different high-Tc_{c} superconductors is explained, postulating a unified order-disorder phase transition driven by both thermally- and disorder-induced fluctuations. The temperature dependence of the transition line and the nature of the disordered phase (solid, liquid, or pinned liquid) are determined by the relative contributions of these fluctuations and by the pinning mechanism. By varying the pinning mechanism and the pinning strength one obtains a spectrum of monotonic and non-monotonic transition lines similar to those measured in Bi2_{2}Sr2_{2}CaCu2_{2}O%_{8}, YBa2_{2}Cu3_{3}O7δ_{7-\delta}, Nd1.85_{1.85}Ce0.15_{0.15}CuO%_{4-\delta}, Bi1.6_{1.6}Pb0.4_{0.4}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} and (La0.937% _{0.937}Sr0.063_{0.063})2_{2}CuO4_{4}Comment: To be published in Phys. Rev. B Rapid Com

    Lyapunov exponent of many-particle systems: testing the stochastic approach

    Full text link
    The stochastic approach to the determination of the largest Lyapunov exponent of a many-particle system is tested in the so-called mean-field XY-Hamiltonians. In weakly chaotic regimes, the stochastic approach relates the Lyapunov exponent to a few statistical properties of the Hessian matrix of the interaction, which can be calculated as suitable thermal averages. We have verified that there is a satisfactory quantitative agreement between theory and simulations in the disordered phases of the XY models, either with attractive or repulsive interactions. Part of the success of the theory is due to the possibility of predicting the shape of the required correlation functions, because this permits the calculation of correlation times as thermal averages.Comment: 11 pages including 6 figure

    Localized behavior in the Lyapunov vectors for quasi-one-dimensional many-hard-disk systems

    Full text link
    We introduce a definition of a "localization width" whose logarithm is given by the entropy of the distribution of particle component amplitudes in the Lyapunov vector. Different types of localization widths are observed, for example, a minimum localization width where the components of only two particles are dominant. We can distinguish a delocalization associated with a random distribution of particle contributions, a delocalization associated with a uniform distribution and a delocalization associated with a wave-like structure in the Lyapunov vector. Using the localization width we show that in quasi-one-dimensional systems of many hard disks there are two kinds of dependence of the localization width on the Lyapunov exponent index for the larger exponents: one is exponential, and the other is linear. Differences, due to these kinds of localizations also appear in the shapes of the localized peaks of the Lyapunov vectors, the Lyapunov spectra and the angle between the spatial and momentum parts of the Lyapunov vectors. We show that the Krylov relation for the largest Lyapunov exponent λρlnρ\lambda\sim-\rho\ln\rho as a function of the density ρ\rho is satisfied (apart from a factor) in the same density region as the linear dependence of the localization widths is observed. It is also shown that there are asymmetries in the spatial and momentum parts of the Lyapunov vectors, as well as in their xx and yy-components.Comment: 41 pages, 21 figures, Manuscript including the figures of better quality is available from http://www.phys.unsw.edu.au/~gary/Research.htm

    Equilibrium and nonequilibrium properties of systems with long-range interactions

    Get PDF
    We briefly review some equilibrium and nonequilibrium properties of systems with long-range interactions. Such systems, which are characterized by a potential that weakly decays at large distances, have striking properties at equilibrium, like negative specific heat in the microcanonical ensemble, temperature jumps at first order phase transitions, broken ergodicity. Here, we mainly restrict our analysis to mean-field models, where particles globally interact with the same strength. We show that relaxation to equilibrium proceeds through quasi-stationary states whose duration increases with system size. We propose a theoretical explanation, based on Lynden-Bell's entropy, of this intriguing relaxation process. This allows to address problems related to nonequilibrium using an extension of standard equilibrium statistical mechanics. We discuss in some detail the example of the dynamics of the free electron laser, where the existence and features of quasi-stationary states is likely to be tested experimentally in the future. We conclude with some perspectives to study open problems and to find applications of these ideas to dipolar media.Comment: 8 pages, 14 figures, Procs. of STATPHYS23, to be published on EPJ

    Evidence for CP-Violating Asymmetries in B0->pi+pi- Decays and Constraints on the CKM Angle phi2

    Full text link
    We present an improved measurement of CP-violating asymmetries in B0 -> pi+ pi- decays based on a 78 fb^-1 data sample collected at the Y(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. We reconstruct one neutral B meson as a B0 -> pi+ pi- CP eigenstate and identify the flavor of the accompanying B meson from inclusive properties of its decay products. We apply an unbinned maximum likelihood fit to the distribution of the time intervals between the two B meson decay points. The fit yields the CP-violating asymmetry amplitudes Apipi = +0.77+/-0.27(stat)+/-0.08(syst) and Spipi = -1.23+/-0.41(stat)+0.08/-0.07(syst), where the statistical uncertainties are determined from Monte Carlo pseudo-experiments. We obtain confidence intervals for CP-violating asymmetry parameters Apipi and Spipi based on a frequentist approach. We rule out the CP-conserving case, Apipi=Spipi=0, at the 99.93% confidence level. We discuss how these results constrain the value of the CKM angle phi2.Comment: 26 pages, 13 figures, submitted to Phys. Rev.

    Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    Get PDF
    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 &times; 10-11 to 5.0 &times; 10-21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 &times; 10-6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation
    corecore